Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Aging (Albany NY) ; 162024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38728249

RESUMEN

BACKGROUND: Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS: The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-ß-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS: Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS: Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-ß-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.

2.
Ann Med Surg (Lond) ; 86(5): 2848-2855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694287

RESUMEN

Vascular calcification is an important hallmark of atherosclerosis. Coronary artery calcification (CAC) implies the presence of coronary artery disease (CAD), irrespective of risk factors or symptoms, is concomitant with the development of advanced atherosclerosis. Coronary thrombosis is the most common clinical end event leading to acute coronary syndrome (ACS). The least common type of pathology associated with thrombosis is the calcified nodule (CN). It usually occurs in elderly patients with severely calcified and tortuous arteries. The prevalence of calcified nodules in patients with ACS may be underestimated due to the lack of easily recognisable diagnostic methods. In this review, the authors will focus on the classification, clinical significance, pathogenesis, and diagnostic evaluation and treatment of CAC to further explore the clinical significance of CN.

3.
Int J Biol Macromol ; : 132313, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740156

RESUMEN

The application of many hydrophilic and hydrophobic nutraceuticals is limited by their poor solubility, chemical stability, and/or bioaccessibility. In this study, a novel Pickering high internal phase double emulsion co-stabilized by modified pea protein isolate (PPI) and sodium alginate (SA) was developed for the co-encapsulation of model hydrophilic (riboflavin) and hydrophobic (ß-carotene) nutraceuticals. Initially, the effect of emulsifier type in the external water phase on emulsion formation and stability was examined, including commercial PPI (C-PPI), C-PPI-SA complex, homogenized and ultrasonicated PPI (HU-PPI), and HU-PPI-SA complex. The encapsulation and protective effects of these double emulsions on hydrophilic riboflavin and hydrophobic ß-carotene were then evaluated. The results demonstrated that the thermal and storage stabilities of the double emulsion formulated from HU-PPI-SA were high, which was attributed to the formation of a thick biopolymer coating around the oil droplets, as well as thickening of the aqueous phase. Encapsulation significantly improved the photostability of the two nutraceuticals. The double emulsion formulated from HU-PPI-SA significantly improved the in vitro bioaccessibility of ß-carotene, which was mainly attributed to inhibition of its chemical degradation under simulated acidic gastric conditions. The novel delivery system may therefore be used for the development of functional foods containing multiple nutraceuticals.

4.
Quant Imaging Med Surg ; 14(4): 2904-2915, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617179

RESUMEN

Background: The effects of glycemic status on coronary physiology have not been well evaluated. This study aimed to investigate changes in coronary physiology by using angiographic quantitative flow ratio (QFR), and their relationships with diabetes mellitus (DM) and glycemic control status. Methods: This retrospective cohort study included 530 patients who underwent serial coronary angiography (CAG) measurements between January 2016 and December 2021 at Tongji Hospital of Tongji University. Based on baseline and follow-up angiograms, 3-vessel QFR (3V-QFR) measurements were performed. Functional progression of coronary artery disease (CAD) was defined as a change in 3V-QFR (Δ3V-QFR = 3V-QFRfollow-up - 3V-QFRbaseline) ≤-0.05. Univariable and multivariable logistic regression analyses were applied to identify the independent predictors of coronary functional progression. Subgroup analysis according to diabetic status was performed. Results: During a median interval of 12.1 (10.6, 14.3) months between the two QFR measurements, functional progression was observed in 169 (31.9%) patients. Follow-up glycosylated hemoglobin (HbA1c) was predictive of coronary functional progression with an area under the curve (AUC) of 0.599 [95% confidence interval (CI): 0.546-0.651; P<0.001] in the entire population. Additionally, the Δ3V-QFR values were significantly lower in diabetic patients with HbA1c ≥7.0% compared to those with well-controlled HbA1c or non-diabetic patients [-0.03 (-0.09, 0) vs. -0.02 (-0.05, 0.01) vs. -0.02 (-0.05, 0.02); P=0.002]. In a fully adjusted multivariable logistics analysis, higher follow-up HbA1c levels were independently associated with progression in 3V-QFR [odds ratio (OR), 1.263; 95% CI: 1.078-1.479; P=0.004]. Furthermore, this association was particularly strong in diabetic patients (OR, 1.353; 95% CI: 1.082-1.693; P=0.008) compared to patients without DM. Conclusions: Among patients with established CAD, on-treatment HbA1c levels were independently associated with progression in physiological atherosclerotic burden, especially in patients with DM.

5.
Food Res Int ; 185: 114277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658069

RESUMEN

For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.


Asunto(s)
Emulsiones , Aromatizantes , Cromatografía de Gases y Espectrometría de Masas , Mentha piperita , Aceites de Plantas , Mentha piperita/química , Emulsiones/química , Humanos , Aceites de Plantas/química , Aromatizantes/química , Gelatina/química , Reactivos de Enlaces Cruzados/química , Gusto , Hidrogeles/química , Nariz Electrónica , Masculino , Femenino , Adulto
6.
Compr Rev Food Sci Food Saf ; 23(3): e13322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597567

RESUMEN

Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.


Asunto(s)
Encapsulación Celular , Probióticos , Humanos , Tracto Gastrointestinal , Biopelículas
7.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520117

RESUMEN

(-)-Epigallocatechin-3-gallate (EGCG) is a natural phenolic substance found in foods and beverages (especially tea) that exhibits a broad spectrum of biological activities, including antioxidant, antimicrobial, anti-obesity, anti-inflammatory, and anti-cancer properties. Its potential in cardiovascular and brain health has garnered significant attention. However, its clinical application remains limited due to its poor physicochemical stability and low oral bioavailability. Nanotechnology can be used to improve the stability, efficacy, and pharmacokinetic profile of EGCG by encapsulating it within nanoparticles. This article reviews the interactions of EGCG with various compounds, the synthesis of EGCG-based nanoparticles, the functional attributes of these nanoparticles, and their prospective applications in drug delivery, diagnosis, and therapy. The potential application of nanoencapsulated EGCG in functional foods and beverages is also emphasized. Top-down and bottom-up approaches can be used to construct EGCG-based nanoparticles. EGCG-based nanoparticles exhibit enhanced stability and bioavailability compared to free EGCG, making them promising candidates for biomedical and food applications. Notably, the non-covalent and covalent interactions of EGCG with other substances significantly contribute to the improved properties of these nanoparticles. EGCG-based nanoparticles appear to have a wide range of applications in different industries, but further research is required to enhance their efficacy and ensure their safety.

8.
J Agric Food Chem ; 72(12): 6276-6288, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38485738

RESUMEN

Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1ß, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Succinatos , Animales , Ratones , Intestinos , Ácidos Cafeicos , Polifenoles , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon
9.
Appl Radiat Isot ; 208: 111297, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513476

RESUMEN

Proton therapy has emerged as an advantageous modality for tumor radiotherapy due to its favorable physical and biological properties. However, this therapy generates induced radioactivity through nuclear reactions between the primary beam, secondary particles, and surrounding materials. This study focuses on systematically investigating the induced radioactivity in the gantry room during pencil beam scanning, utilizing both experimental measurements and Monte Carlo simulations. Results indicate that patients are the primary source of induced radioactivity, predominantly producing radionuclides such as 11C, 13N, and 15O. Long-term irradiation primarily generates radionuclides like 22Na, 24Na, and 54Mn etc. Additionally, this study estimates the individual doses received by medical workers in the gantry room, the irradiation dose for patient escorts, and the additional dose to patients from residual radiation. Finally, the study offers recommendations to minimize unnecessary irradiation doses to medical workers, patient escorts, and patients.


Asunto(s)
Terapia de Protones , Radiactividad , Humanos , Terapia de Protones/métodos , Dosificación Radioterapéutica , Radioisótopos , Método de Montecarlo , Planificación de la Radioterapia Asistida por Computador/métodos
10.
Food Funct ; 15(7): 3395-3410, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38465655

RESUMEN

Consuming fried foods has been associated with an increased susceptibility to mental health disorders. Nevertheless, the impact of alpha-lipoic acid (α-LA, LA) on fried food-induced autism-like behavior remains unclear. This study aimed to explore how LA affects autism-related behavior and cognitive deficits caused by acrylamide in mice, a representative food hazard found in fried foods. This improvement was accomplished by enhanced synaptic plasticity, increased neurotrophin expression, elevated calcium-binding protein D28k, and restored serotonin. Additionally, LA substantially influenced the abundance of bacteria linked to autism and depression, simultaneously boosted short-chain fatty acid (SCFA) levels in fecal samples, and induced changes in serum amino acid concentrations. In summary, these findings suggested that exposure to acrylamide in adolescent mice could induce the development of social disorders in adulthood. LA showed promise as a nutritional intervention strategy to tackle emotional disorders during adolescence.


Asunto(s)
Trastorno Autístico , Ácido Tióctico , Ratones , Animales , Ácido Tióctico/farmacología , Trastorno Autístico/inducido químicamente , Eje Cerebro-Intestino , Acrilamida/toxicidad , Dieta
11.
J Nutr Health Aging ; 28(5): 100203, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38460315

RESUMEN

OBJECTIVES: Hypertension, a key contributor to mortality, is impacted by biological aging. We investigated the relationship between novel biological aging metrics - Phenotypic Age (PA) and Phenotypic Age Acceleration (PAA) - and mortality in individuals with hypertension, exploring the mediating effects of arterial stiffness (estimated Pulse Wave Velocity, ePWV), and Heart/Vascular Age (HVA). METHODS: Using data from 62,160 National Health and Nutrition Examination Survey (NHANES) participants (1999-2010), we selected 4,228 individuals with hypertension and computed PA, PAA, HVA, and ePWV. Weighted, multivariable Cox regression analysis yielded Hazard Ratios (HRs) relating PA, PAA to mortality, and mediation roles of ePWV, PAA, HVA were evaluated. Mendelian randomization (MR) analysis was employed to investigate causality between genetically inferred PAA and hypertension. RESULTS: Over a 12-year median follow-up, PA and PAA were tied to increased mortality risks in individuals with hypertension. All-cause mortality hazard ratios per 10-year PA and PAA increments were 1.96 (95% CI, 1.81-2.11) and 1.67 (95% CI, 1.52-1.85), respectively. Cardiovascular mortality HRs were 2.32 (95% CI, 1.97-2.73) and 1.93 (95% CI, 1.65-2.26) for PA and PAA, respectively. ePWV, PAA, and HVA mediated 42%, 30.3%, and 6.9% of PA's impact on mortality, respectively. Mendelian randomization highlighted a causal link between PAA genetics and hypertension (OR = 1.002; 95% CI, 1.000-1.003). CONCLUSION: PA and PAA, enhancing cardiovascular risk scores by integrating diverse biomarkers, offer vital insights for aging and mortality evaluation in individuals with hypertension, suggesting avenues for intensified aging mitigation and cardiovascular issue prevention. Validations in varied populations and explorations of underlying mechanisms are warranted.

12.
Food Chem ; 445: 138693, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350197

RESUMEN

The impacts of varying germination periods (0-72 h) on morphological properties, proximate composition, amino acid profile, GABA levels, antioxidant attributes, polyphenol content (both free and bound), and volatile compounds of quinoa were evaluated. Germination significantly increased the content of fiber, amino acids, GABA, polyphenols, and in-vitro antioxidant activities in quinoa. The optimal nutritional quality and antioxidant capacity of quinoa were observed during the 36-72 h germination period. We examined the dynamics of 47 phenolic compounds in quinoa during germination and noted a substantial rise in free phenolic acids and bound flavonoids post-germination. A total of 53 and 84 volatile compounds were respectively identified in ungerminated quinoa and germinated quinoa. It was found that the germination period of 24-48 h contributed to reducing the presence of undesirable flavors. TEM analysis revealed significant structural damage to the ultrastructure and relaxation of the cell wall in germinated quinoa grains.


Asunto(s)
Antioxidantes , Chenopodium quinoa , Antioxidantes/química , Chenopodium quinoa/química , Semillas/química , Polifenoles/análisis , Valor Nutritivo , Ácido gamma-Aminobutírico/análisis , Germinación
13.
J Agric Food Chem ; 72(8): 4049-4062, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373323

RESUMEN

This work explored the effects of Lactobacillus plantarum LLY-606 (LLY-606) on cognitive function in aging mice. Our findings demonstrated that LLY-606 effectively prolonged the lifespan of mice and improved age-related cognitive impairments. Additionally, our study revealed that supplementation with LLY-606 resulted in the downregulation of inflammatory cytokine levels and the upregulation of antioxidant capacity. Furthermore, probiotic supplementation effectively mitigated the deterioration of the intestinal barrier function in aging mice. Amplicon analysis indicated the successful colonization of probiotics, facilitating the regulation of age-induced gut microbiota dysbiosis. Notably, the functional abundance prediction of microbiota indicated that tryptophan metabolism pathways, glutamatergic synapse pathways, propanoate metabolism pathways, and arginine and proline metabolism pathways were enriched after the LLY-606 intervention. In summary, LLY-606 emerged as a potential functional probiotic capable of influencing cognitive function in aging mice. This effect was achieved through the modulation of gut microbiota, the regulation of synaptic plasticity, and the enhancement of neurotrophic factor levels.


Asunto(s)
Disfunción Cognitiva , Microbioma Gastrointestinal , Lactobacillus plantarum , Probióticos , Humanos , Lactobacillus plantarum/metabolismo , Probióticos/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Homeostasis
14.
J Agric Food Chem ; 72(10): 5368-5378, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38394628

RESUMEN

This study employed adaptive laboratory evolution to improve the acid tolerance of Lactiplantibacillus plantarum, a vital strain in food fermentation and a potential probiotic. Phenotype and genomic analyses identified the overexpression of stress response proteins, ATP synthases, and transporters as pivotal in conferring acid tolerance to the evolved strains. These adaptations led to a shorter lag phase, improved survival rates, and higher intracellular pH values compared to the wild-type strain under acid stress conditions. Additionally, the evolved strains showed an increased expression of genes in the fatty acid synthesis pathway, resulting in a higher production of unsaturated fatty acids. The changes in cell membrane composition possibly prevented H+ influx, while mutant genes related to cell surface structure contributed to observed elongated cells and thicker cell surface. These alterations in cell wall and membrane composition, along with improved transporter efficiency, were key factors contributing to the enhanced acid tolerance in the evolved strains.


Asunto(s)
Lactobacillus plantarum , Probióticos , Membrana Celular , Pared Celular , Fermentación , Genómica , Proteínas de Choque Térmico , Proteínas de Transporte de Membrana
15.
Food Funct ; 15(4): 2249-2264, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38319599

RESUMEN

The ApoE4 allele is the strongest genetic determinant for Alzheimer's disease (AD), while obesity is a strong environmental risk for AD. The modulatory effect of the ApoE genotype on aging-related cognitive function in tandem with a high-fat diet (HFD) remains uncertain. This study aimed to elucidate the effects of ApoE3/ApoE4 genotypes in aged mice exposed to a HFD, and the benefits of n-3 polyunsaturated fatty acids (PUFAs) from fish oil. Remarkably, the HFD led to weight gain and lipid accumulation, more pronounced in ApoE3 mice, while ApoE4 mice experienced exacerbated cerebral insulin resistance, neuroinflammation, and oxidative stress. Critically, n-3 PUFAs modulated the cerebral insulin signaling via the IRS-1/AKT/GLUT4 pathway, mitigated microglial hyperactivity, and reduced IL-6 and MDA levels, thereby counteracting cognitive deficits. These findings highlight the contrasting impacts of ApoE genotypes on aging mice exposed to a HFD, supporting n-3 PUFAs as a strategic nutritional intervention for brain health, especially for ApoE4 carriers.


Asunto(s)
Enfermedad de Alzheimer , Ácidos Grasos Omega-3 , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Genotipo , Cognición , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/metabolismo , Envejecimiento , Ratones Transgénicos
16.
Food Chem ; 443: 138495, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277937

RESUMEN

Applications of pea protein in the food industry have been greatly restricted by its poor functional properties. In order to solve this problem, a novel technique combining enzymatic hydrolysis and fatty acid acylation has been applied in this work to construct a pea protein-fatty acid covalent complex that aims to improve its functional properties. The processed pea protein with increased water solubility tends to decrease the chance of self-aggregation. Additionally, emulsifying and antioxidant properties have also been found after this process. On top of that, the modified pea protein has been characterized by Fourier transform infrared and circular dichroism spectroscopy. These results demonstrate that these properties were mainly caused by the acylation of the amino group from hydrolyzed pea protein and the carboxyl group from the fatty acid. The enzymatic hydrolysis/fatty acid acylation research provides insights into manufacturing high-quality functional lipoproteins from inexpensive pea protein for the food industry.


Asunto(s)
Proteínas de Guisantes , Succinimidas , Proteínas de Guisantes/química , Hidrolisados de Proteína/química , Ácidos Grasos/química , Acilación
17.
J Agric Food Chem ; 72(1): 437-448, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38164789

RESUMEN

Inflammatory bowel disease (IBD) is a chronic and recurrent disease. Increasing evidence suggests a higher incidence of depression in IBD patients compared with the general population, but the underlying mechanism remains uncertain. Rattan pepper polysaccharide (RPP) is an important active ingredient of rattan pepper, yet its effects and mechanisms on intestinal inflammation and depression-like behavior remain largely unknown. This study aims to investigate the ameliorating effect of RPP on dextran sulfate sodium salt (DSS)-induced intestinal inflammation and depression-like behavior as well as to reveal its mechanism. Our results indicate that RPP effectively ameliorated intestinal microbiota imbalance and metabolic disorders of short-chain fatty acids (SCFAs) and bile acids in mice with DSS-induced inflammation, contributing to the recovery of intestinal Th17/Treg homeostasis. Importantly, RPP effectively alleviated brain inflammation caused by intestinal inflammatory factors entering the brain through the blood-brain barrier. This effect may be attributed to the inhibition of the TLR4/NF-κB signaling pathway, which alleviates neuroinflammation, and the activation of the CREB/BDNF signaling pathway, which improves synaptic dysfunction. Therefore, our findings suggest that RPP may play a role in alleviating DSS-induced gut inflammation and depression-like behavior through the microbiota-gut-brain axis.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Piper nigrum , Humanos , Animales , Ratones , Eje Cerebro-Intestino , Cloruro de Sodio Dietético , Cloruro de Sodio , Inflamación/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon
18.
Int J Biol Macromol ; 259(Pt 2): 129224, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185308

RESUMEN

Due to the serious bacterial infection of skin and the waste of petroleum-based materials, there is an urgent need to develop natural biodegradable wound dressings with high antibacterial activity. Phosvitin (PSV) has shown its natural antioxidant and antibacterial properties, making it an excellent material for preparing wound healing dressings. In this study, we investigated the effect of magnetic field on the preparation of PSV-Microcrystalline Cellulose (MCC) composite hydrogels in 1-Allyl-3-methylimidazolium chloride (AmimCl) system. The results showed that the prepared hydrogels exhibited homogeneous surface structure, suitable swelling capacity and elasticity modulus, and sufficient thermal stability. The excellent antibacterial and antioxidant activities of hydrogels were mainly resulting from AmimCl and PSV, respectively, and the properties were enhanced after magnetic field treatment. The proteomics analysis indicated that AmimCl can readily penetrate the biological membranes of Staphylococcus aureus (S. aureus), upsetting the metabolism and reducing the virulence. The hydrogels showed great blood compatibility. Compared with the commercial materials, the 5 mT-treated hydrogels presented a comparable wound healing rate in the full-thickness skin injury model. On day 7, the wound healing rate of the 5 mT group reached approximately 84.40 %, which was significantly higher than that of the control group, 72.88 % (P < 0.05). In conclusion, our work provides experience for the development of biodegradable materials combined in ionic liquids and magnetic field, and explores their applications in wound healing dressings.


Asunto(s)
Compuestos Alílicos , Antioxidantes , Fosvitina , Esfingosina/análogos & derivados , Antioxidantes/farmacología , Staphylococcus aureus , Cicatrización de Heridas , Antibacterianos/farmacología , Hidrogeles/farmacología
19.
Food Chem X ; 21: 101096, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38229672

RESUMEN

The study aims to explore an effective approach to improve the sensory quality and consumer satisfaction of cookies in the food industry. L. reuteri and L. rhamnosus were chosen to ferment egg yolk and their effects on dough properties and physicochemical properties, flavor, texture, color, and sensory acceptability of cookies were studied. Results show that the utilization of fermented egg yolk significantly decreased baking loss and increased spread factor of cookies. GC-MS analysis indicates different Lactobacillus species enhanced cookie flavor through unique mechanisms. Texture analysis shows cookies prepared with L. rhamnosus-fermented egg yolk had significantly lower hardness (1807.12 g) than control cookies (2028.34 g). Sensory evaluation reveals the L. reuteri-fermented egg yolk significantly improved the overall acceptability of cookies by enhancing appearance, flavor, and mouthfeel scores. These findings have practical implications for food manufacturers seeking to enhance their product's quality and appeal, thereby gaining a competitive edge in the market.

20.
Food Chem ; 441: 138292, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38183717

RESUMEN

Goat whey protein (GWP) has a rich amino acid profile and good techno-functional attributes but still has limited functional performance for certain applications. This study introduces an innovative ultrasound-assisted Maillard reaction to enhance GWP's functional properties by conjugating it with either gum Arabic (GA) or citrus pectin (CP). Sonication accelerated the Maillard reaction, and the glycosylation of GWP was significantly enhanced after optimization of the conjugation conditions. Gel electrophoresis examination verified the creation of GWP-polysaccharide conjugates, while scanning electron microscopy analysis revealed structural modifications caused by polysaccharide grafting and sonication. The use of ultrasound in the Maillard reaction notably enhanced the solubility, foaming capacity, and emulsifying attributes of the GWPs. Among the conjugates, the GWP-GA ones exhibited the best functional properties. Our findings suggest that this approach can notably improve the functional attributes of GWPs, thus broadening their potential uses in the food sector and beyond.


Asunto(s)
Cabras , Reacción de Maillard , Animales , Proteína de Suero de Leche/química , Emulsiones/química , Glicosilación , Goma Arábiga/química , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA